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ABSTRACT
We consider the infinite interval regulator problem for systems with
delays. A spline approximation method for computation of the gain operators
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1. INTRODUCTION

The problem of cbnstructing feedback controls for hereditary or delay
systems is not new and there is a rather extensive literature pertaining to
several aspects of this problem. We refer the reader to the surveys of Ross
[24], Alekal, et.al. [1], and section 5 of Banks and Burns [5] for accounts of
some of the previous pertinent results. Among the fundamental earlier con-
tributions are those of Krasovskii [17], [18] (establishment of the functional
form of optimal feedback for delay systems and early use of an "averaging" type
approximation scheme), Eller, et.al. [13] and Ross [24], [25] (derivation of
Riccati type equations for the feedback gains in the functionals and methods
for computing these gains), and Delfour [12] (convergence analysis of an
"averaging" scheme for approximate solution of an operator form of the Riccati
type equations for the feedback gains). More recently, Gibson [14] and Kunisch
[19] have made important contributions which we shall discuss in the context
of our presentation below.

Qur own renewed interest in feedback controls for delayed systems was
motivated by problems arising in the design of controllers for a liquid
nitrogen wind tunnel (the National Transonic Facility or NTF) currently under
construction by NASA at its Langley Research Center in Hampton, Va. With this
wind tunnel it is expected that researchers will be able to achieve an order
of magnitude increase in the Reynolds number over that in existing tunnels
while maintaining reasonable levels of dynamic pressure. Test chamber tem- -
peratures (the Reynolds number is roughly inversely proportional to temperature)
will be maintained at cryogenic levels by injection of liquid nitrogen as a >
coolant into the airstream near the fan section of the tunnel. In addition

to a gaseous nitrogen vent to help control pressure, motor driven fans will



be used as the primary regulator of Mach number. Fine control of Mach number
will be effected through changes in inlet guide vanes in the fan section.

Schematically, the tunnel can be depicted as in Figure 1.1

FAN P
SECTION

INLET
GUIDE
VANES

¢: GNZ [.N2 v\
VENT INJECTION

L1 L

TEST
CHAMBER

L —

FIGURE 1.1

The basic physical model relating states such as Reynolds number, pressure,
and Mach number to controls such as LN2 input, GN2 bleed, and fan operation
involves a formidable set of partial differential equations (the Navier-

Stokes theory) to describe fluid flow in the tunnel and test chamber. This
modei has, not surprisingly, proved to be very unwieldy from a computational

viewpoint and is difficult, if not impossible, to use directly in the design




of sophisticated control laws. (Both open loop and feedback controllers are
needed for efficient operation of the tunnel -~ and this is a desirable goal
since cost estimates for liquid nitrogen alone are $6.5 x 106 per yéar of
operation.) In addition\%o the design of both open loop and closed loop
controllers, parameter estimation techniques will be useful once data from
the completed tunnel is available (current investigations involve use of data
from a 1/3 meter scale model of the tunnel).

In view of the schematic in Figure 1.1, it is not surprising that
engineers (e.g., see [3] and [15]) have proposed design of control laws for
subsystems modeled by lumped parameter models (the variables represent values
of states and controllers at various discrete locations in the tunnel and test
chamber) with transport delays to account for flow times in sections of the
tunnel. A specific example is the model [3] for the Mach no. control loop
in which variations in the Mach no. (in the test chamber) are, to first order,
controlled by variations in the inlet guide vane angle setting (in the fan.
section) - i.e., sM(t) ~ 66(t-r) where r represents a transport time from
the fan section to the test chamber. Morg precisely, the proposed equation
relating the variation sM (from steady state operating values) in Mach no. to

the variation §8 in guide vane angle is
T6M(t) + sM(t) = kse(t-r)

while the equation relating the guide vane angle variation to that 8, of an

actuator is
- . 2 _ 2
§0(t) + 2zwse(t) + w 68(t) = w seA(t).

Rewriting the system in vector notation, one thus finds that the Mach no. control




loop involves a regulator problem for the equation
(1.1)  x(t) = Agx(t) + A]x(t-r) + Bou(t)

where x = (&M, 68, 80), u = 88,. Here the control is the guide vane angle
actuator input. A similar 4-vector system problem can be formulated in the
case where one treats the actuator rate séA as the control - see [3], [11].

We shall return to examples such as (1.1) for the NTF in section 4 below where
we present numerical results obtained using the methods we propose.

Several recent contributions to the literature on numerical methods for
delay systems prompt the techniques we present in this paper. A rather complete
convergence analysis (along with numerical results) of the so-called "averaging"
scheme applied to open loop control problems for delay systems was given in
Banks and Burns [5]. The analysis was based on approximation results fon
linear semigroups involving the Trotter-Kato theorem (a functional analytic
version of the Lax Equivalence theorem: consistency plus stability implies
convergence). Gibson [14] and Kunisch [19] have shown that these same tools
can be used to develop a convergence theory for approximations of the feedback
gains based on the "averaging" techniques. Subsequent to the deye]opment of
"averaging" methods for delay systems (which result in essentially first order
numerical schemes), Banks and Kappel [9] developed higher order approximation
schemes based on spline approximations. In numerous situations ([4], [6], [7],
[8], [9]) these methods have proven superior computationally to the popular
"averaging" techniques. In this paper we show how one can use spline based
computational schemes to obtain the gains in the feedback controllers for
delay systems. We present a summary of our numerical findings with these

methods which support the efficacy of the proposed schemes.




Our presentation is as follows: In section 2 we summarize those facts
_from the literature on delay systems needed to discuss and develop our approx-
imation techniques. Section 3 is then devoted to a careful explanation of
the proposed schemes, hopefully in sufficient detail to permit readers to
develop their own computational packages should they so desire. We report on
our numerical experience with the spline based schemes in section 4 where we
also compare our findings to those obtained using the "averaging” methods.
Finally we discuss briefly in section 5 some of the theoretical aspects of the
spline techniques. ~

The notation we use throughout is rather standard with the following
exception. We shall be dealing with vector systems but shall not always make
this precise when no Toss of understanding results. For example, if x is an
n-vectof valued function with components in the Sobolev space Hl, we shall
simply write x e:H]. We shall only use transpose notation where it is

essential; e.g., if Q0 is an n x n matrix we shall write xqox instead of the

more conventional XTQOX.




2. FEEDBACK CONTROLS FOR DELAY SYSTEM PROBLEMS

In light of the motivation above, we consider the control problem of

finding an m-vector valued L2 control u which minimizes

(21) 35 no) = [ [x(EQGR(E) + w(eDRu(e) Tt

subject to the n-vector system

(2.2) x(t) Lx, + Bgu(t) » t>0,

(2.3) x(0)

N X0=‘P,

where Qo, R are symmetric n x n and m x m matrices, respectively, with 00‘1 0,
R>0, B0 is an n x m matrix, and y is an n-vector function with components

in Lz(-r,O) - (we denote this by y E:Lg(-r,o)). Following standard notation,
the symbol x, denotes the function e + x(t+e), - r < & < 0, and we assume the

linear operator L has the form
v 0

Lo = ,20 Aje(-ry) + [ D(e)¢(o)de
i= -r

where 0 = rg<rp<-..<r =r, As i = 0, 1, ..., v, are n x n matrices,
and D is an n x n matrix function with components in LZ(-r,O). This operator
and the system (2.2), (2.3) can be given a proper interpretation for initial
data y and controls u in L2 and, indeed, one can establish existence of a
unique solution x € H! on any finite interval [0,T] where the equation (2.2)
is satisfied in the usual Caratheodory sense (i.e., almost all t) - see [9].

Assuming for the moment that a solution to the above control probliem

exists in closed loop form, it can be shown (see [17], [14]) to have the form

0
(2.4) u(t) = - [Kox(t) + K](e)x(t+e)de]
-r




where the m x n gain matrices satisfy certain Riccati-1like systems of equations
([13], [24], [1], [14]). Our goal here is to discuss numerical approximations
to K0 and K which, when applied to (2.2), (2.3), (2.4), yield a near optimal
performance. It has been understood for some time that we are in this case
dealing with feedback controls for a infinite dimensional state system. This
system can be succinctly formulated abstractly (e.g., see [5], [9], [12], [14])
in a manner that facilitates convergence analyses for approximation schemes.
While we shall not pursue a convergence analysis in this paper, it:is con-
venient in discussing our numerical methods and results to use this formulation
and the corresponding notation.

To this end, we let
(2.5)  z(t) = (x(t),x;)

- where x is the solution of (2.2), (2.3). Define Z to be the product space

R" x Lg(-r,o) with the usual product Hilbert space topology (and inner product)
and let D(A) = {(£,¢) € Z: £ = ¢(0), ¢ € H](-r,O)} be the domain for the linear
operator A given by A(¢(0),¢) = (L¢,$).‘ Recalling (2.1) and (2.2), wé define
the linear operators Q : Z +~ Z and B : R™ > Z by Q(£,¢) = (Qog,o) and

Bv = (Bov,O). Then our original optimization problem for (2.1) - (2.3) can

be reformulated as the equivalent problem of minimizing

(2.6) J(U;io) = é”{<Qz(t),z(t)> + u(t)Ru(t)1dt

over u €.L2 subject to the evolution equation constraint

(2.7) z(t) = Az(t) + Bu(t), t >0,

(2.8)  2(0) = z5 = (n,v).




It is known [5], [9] that A generates a Co-semigroup {S(t)} of solution
operators and that z defined by (2.5) is the unique mild solution of (2.7),

(2.8). That is, z is given by
| t
(2.9) z(t) = S(t)z0 + é S(t-o)Bu(o)do.

If we define an admissible control for our problem corresponding to the
initial condition zae:Z to be an m-vector function u which is integrable on
(0,=) and for which J(u;zo)is finite; and if we make the assumptiop that the
operators Q0 and L are such that any admissible control corresponding to the
initial condition ZOEIZ drives the resulting solution of the state equation
(2.7) to zero asymptotically,then we may use results due to Gibson [14] to
characterize the solution to the problem in feedback form. More precisely,
if there exists an admissible control corresponding to each initial condition
zbe:Z (or equivalently the system (2.7) is stabilizable, see definition 2.3
and corollary 4.1 of [14]), then there exists a nonnegative, selfadjoint linear

operator T| on Z which satisfies the Riccati algebraic equation
(2.10) A“TT+TTA -TTer 18" T+ q=0 .-

Moreover, under the assumption made above there exists at most one such solution
and the unique solution to the problem (2.6) - (2.8) can be given in feedback

form by
(2.11) U(t) = - RIBTT2(t), 0<t <=,
and

min IHvi;za) = <TTz52.>.
v admissible 0 0°"0




The operator “JT can be written as a matrix of linear operators
00 )
1} T
10 1
2L il

where 11'00 : R" + R" and 11']] : Lg(-r,O) -+ Lg(-r,O) are nonnegative and
selfadjoint, T7'0€ L) ™(-r,0) and T = 7' witn

0
(212) % = %) ste)de, o € L(-r,0) .
-r

If we recall the definition of the operator B and assume that the system (2.7)
is stabilizable,then under the assumption made above, (2.5), (2.11) and (2.12)
yield that the unique solution to the problem for (2.1) - (2.3) is given in
feedback form by

0
(2.13) U(t) = - RTBILTT % (t) + f T7'%e) Tx(t+e)de]
-r

with (for 2, (n,v))

min J(Vin,p) = <'TT20,20>
v admissible

:
That is, the gains Ky, K, of (2.4) are given by R™'8] TT %0 and &7'87(TT'0),

respectively, and can be obtained by solving the Riccati equation (2.10).
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3. THE APPROXIMATION SCHEME

In this section we develop and discuss the implementation of a spline
based computational scheme which yields a sequence of finite dimensional
operators {‘TT'N} which approximate TV, the $olution to the operator Riccati
algebraic equation given by (2.10). The 'TTN are found by solving standard
matrix Riccati algebraic equations, and are then used to construct feedback
controls which approximate (2.11) and which produce near optimal performance by
the system (2.7) (2.8) as measured by the functional (2.6).

The approach we take is based largely upon the spline approximation
framework developed in [9] for the approximation of solutions of linear
functional differential equations. We summarize briefly the essentials of
that development. Let ZN be a sequence of spline based subspaces of 7
satisfying ZNCD(A) N=1,2, ... . Let Pyl Iy denote the corresponding
sequence of orthogonal projections of Z onto ZN cohputed with respect to the

weighted inner product <- ->g on Z given by

T 9 7
<(n,qs),(s,w)>g =ng+ [ ¢(8) w(e)g(e)de

-r
where
] -r i 9 < - rv-]
2 -r\)-] 6 <= r‘\)-2
g(e) =
v-1 “rp <0 <=1y




N

o s . m =
Define the linear operators AN and QN on ZN and BN. R" » ZN by AN PNA,
BN = PNB and QN = PNQ, respectively, and let 'TTN be a nonnegative selfadjoint

solution to the Riccati algebraic equation in ZN given by
* _'l * _
(3.1) Ay Ty + T - TTNBNR By Ty *+Qy=0.

The existence and uniqueness of solutions of (3.1), which are related to the
existence and uniqueness of solutions of (2.10) and certain properties of the
approximation scheme itself, will be discussed in section 5. For the present,
however, we assume that for all N sufficiently large, a solution 'TTN exists
with FITN > 0 and TT; = TTN.

The use of the weighted inner product <.,->_ in place of the standard

g
inner product on Z in computing the projections PN (and therefore the operators
. AN) insures that the operators AN satisfy a uniform dissipative inequality of

the form

<ANz,z>g < B <2,2> z €1y

g »

and hence that the solutions of the finite dimensional ordinary differential

equation initial value problem in ZN

(3.2) ‘zN(t) Agzylt) + Byu(t)s t>0,

zN(O) PNz0

approximate the solution of (2.7),(2.8) (see [9]). It is this fundamental
convergence result which forms the theoretical foundation for the schemes being

developed here.
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Since the domain of the operators PN is Z = R" x Lg(-r,o),the operators

'TTNPN can be written as the matrix of linear operators given by

00 01
TTN Ty
TT\Py = |
10 n
e Ty

00 IR
where the n x n matrix TT " and 'rrN : Lg(-r,o) > Lg(-r,O) are nonnegative and

10
selfadjoint, 'TTN is an n x n matrix valued function with components in LZ’

01 10*
and TT-N = ’FYN with

o 0
o=/ T s(e)de, o€ Lh-r,0).
-r

If the approximating optimal controls in feedback form for the problem involving

(2.6) - (2.8) are defined by

(3.3)  Ty(t) = - &8y TN Py2(t)

then the approximate solutions to our proB]em take the form
(3.4)  Ty(t) = - [R1BITTR x(t) + {2 R™1BY TT A0 (0) Tx(t+o)de]

with the corresponding approximating optimal trajectories being given by the

solutions to

(3.5)  X(t) = (A - B,R™'BITTROx(t) + L Ageleery)

0
+  (D(6) - BGR 1By TT2(0))x(t+e)de
-r

for any initial conditions x(0) = n€ R" and Xg = ¥ € Lg(-r,O). In addition,

the optimal cost can be approximated by
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(3-6) <’]TNPN(T\9W)’ PN(n,¢)> .

Equation (3.1) is an operator equation, and thus is not suitable for
computational purposes in its present form. In order to find the matrix form
of (3.1) a basis for ZN must be chosen and matrix representations for the

* *
operators AN’ AN, BN’ BN and QN with respect to this basis must be computed.

The adjoint operators A* and B* (and therefore their approximations A; and B;) may

be computed with respect to either the standard inner product on Z, <.,*>, or the

weighted inner product <-,->g. Indeed, the fact that

<Qz,z>_ = <Qz,z>

g
for all z_€'Z impiies that the abstract regulator problem given by (2.6), (2.7)
and (2.8) can be formulated in the space Z using either inner product and still be
equivalent to our original control problem. However, the expressions for the
matrix representations for the operators A; and B; are simplified if the <-,->g
inner product is employed (in this case of course it must also. be used in (3.6)). -
When the discrete delay part of L consists of only a single delay term (i.e.,
v=1), then g(8) = 1 and the two inner products are the same.

We shall outline the necessary procedure for finding matrix representations in
the case of "linear" or first order sp]iné functions; however the ideas presented

are easily extended to the case of cubic or higher order spline functions.

For each N =1, 2, ..., and each ¢ € [-r,0], let

(N, N N N
Fityy-9)  tyce.cti,
Neoy = | MgtV N N
o3(0) = | Mo-tiy) iy zestl gzl
. O otherwise
N, N N
AR -r<ec<t
%(e-t?) t';‘ieio rity - @) 202ty
Negy =
¢g(9) = oy(8) =

0 otherwise 0 otherwise |,
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where t? =-§%, §=0,1,2, ..., N, and define Zy to be

N
Zy = ((6(0),0) € Z: 0= T vt , v,€ R .
j=0 J°J J
Note that dim ZN= n(N+1) and that ZN C D(A) as is required by the theory out-

lined above.

If the n x n(N+1) matrix function ¢N(-) is defined by the relation

V(o) = (op(e), o)(0), ... 0n(8)) @ 1,

for 6 € [-r,0],where I denotes the n x n identity matrix and ® is the
Kronecker product, then an arbitrary element in Zys @N = (wN(O), wN) can be

represented by
M= ), WY = (No)a, o)

for some vector a € Rn(N+]).

For an arbitrary element z = (n,¢9) € Z it is
shown in [9] that the vector representation a for its projection Pyz with

respect to the <-,->g inner product defined above is given by

3.7) a= (N W)

N

where the n(N+1) x n(N+1) nonsingular symmetric matrix K  is given by

0
3.8) kN = oN0o)TeN(0) + f oM(e)TeM(o)a(o)de
-r

and the mapping hN: yARS R"(N+]) is defined by

0
(3.9)  W¥n,w) = N 0)Tn + f oM(e)Tu(e)g(ea)de .
-r
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This in turn allows for the computation of the matrix representation AN for the

operator AN’

(3.10) AN = (MM

N

where KN is given in (3.8) and the n(N+1) x n(N+1) matrix H" is given by

0
HN = hN(quN, isN) = ¢N(O)T(L¢N) +. of‘(e)&"(e)g(e)‘de .
-r

For the linear spline case it is not difficult to compute the inner products

N and HN

appearing in the definitions of the matrices K analytically, at least
for relatively simple forms of the operator L. The forms for these matrices
are given explicitly (in terms of the matrices Aj, j=0,1,2, ..., v, and
the matrix function D appearing in the definition of the operator L) in [9]
and [10].

In order to compute the matrix representation A*N for the operator %;
we note that for arbitrary elements ; and @N in ZN with corresponding
n(N+1)-vector representatibns a and g respectively, it follows that

(3.11) <oV, @">g = <((0)a, oY) . (aM0)e, o"s)>g

0
a'eM(0)TeN(0)p + / a'oN(0)TeN(e)ag(0)de
-r

= aTKNB

N

where the n(N+1) x n{(N+1) nonsingular matrix K" is given by (3.8).
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Therefore, (3.10) implies that
.- -~ -~ ‘] T -
(3.12) <ayes o = (YT = T THY s = T T T

-1 T
= a kN Yy e

= <;N, I‘NJ;N>g

where rN is the linear transformation on ZN with matrix representation

-1 T
(OINCUN N- A% and

Equation (3.12) implies that T
-1 T
(3.13) AN = o WY

or

. T
(3.14) AN = Ny @M A,

: . gM . i =
Since the operators BN. R" » ZN and QN. ZN -+ ZN. are defined by BNv PN(BOV,O)

and QN(”’w)=’N@0"’0) respectively, (3.7) and (3.9) imply that their matrix

N

representations, B~ and QN are given by

(3.15) BN = (KN)-]¢N(O)TBO

and

N

-1
(3.18) " = (o0 ggeMc0).

*
Finally, B N, the matrix representation for the operator B;,can be computed

in a manner similar to the one used to compute A*N and is given by
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(3.17) BN - Bg¢"(0)

or

3.18) 8™ = MM

A, -
If we let PN denote the matrix representation for'TTN, the solution to

the operator equation (3.1), the matrix form of (3.1) is given by

v N
(3.19) ANpN 4 pNAN _ pNgNp-Tg*NpN , N

Premultiplying by KN and using (3.14) and (3.18), (3.19) becomes

NI
(AM) KON NBNAN _ (MBgN=T )T NN, N

e N _ N3N N _  N.N . N

If the substitutions P° = K'P" and Q = K'Q  are made in the last equation

N

above, a standard matrix Riccati algebraic equation in R"(N+]) for P results

and is given by
T N T oy
(3.20) (ANy'pN & pNAN _ pNgNp-T(gN) 'pN 4 N

N

Equation (3.20) can be solved for the matrix P using standard computational

techniques and readily available software packages (see [2] and [20]).
Once PN has been determined, a simple calculation reveals that the Nth

approximating optimal control for our problem given by (3.4) takes the form

3 -1y
(3.21) Gy(0) = - LR 8loMo o PN T N Txce)

+ j R s N0y (xNy” PN(K ) Y Nio)Tx(t+e)g(e)de].
-r
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Comparing (3.21) to (3.4), it is immediately clear that the approximating feed-

back gains are given by
(3.22) R'BITTY = R“BT¢N(0)<K) Ny N o) T

and

-1
(3.23) RIBLITI (7 = R 8TsM0) () Py o) Ta()

Using (3.6) and (3.11) we obtain an approximation to the optimal value of the
cost functional. For a given set of initial conditions x(0) = n, Xg = ¥

we have
- Ny N N
(3.24) JI(usn.y) v [(K) ni(n w)] P (K h (n,¥)

where hN is given by (3.9).

The approximation scheme which was developed above is semi-discrete
in nature in that the approach taken is based primarily upon the approximation
of the infinite dimensional state equation (2.7) in the space Z by a sequence
of finite dimensidna] ordinary differential equations in ZN of the form (3.2).
However it is also possible to develop a parallel theory which is based upon
a full discretization of the optimization problem in the spirit of the results
presented in [23]. The cost functional (2.6) is discretized and the state
equation (in its integrated form (2.9)) is approximated by a finite dimensional
difference equation in ZN resulting in a finite dimensional discrete steady
state linear regulator problem which can be solved in feedback form using

conventional methods. We sketch briefly the particulars of such an approach.
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Let the Nth approximating optimization problem be given by:

Find a sequence {U?}:=0“ of m-vectors in %9 such that 32 minimizes

L

N,, N.. _ ~ N _N N N
J ({“t}’ zo) = tZO Q2gs 24> + <Ry U

subject to

N oo a2+ fp (o N =

(3.26) Znh = P\Z

N
0 N“0

where QN = ﬁ QN’ RN = -,ER and AN’ PN, BN’ QN,R and z, are as they have been
defined above. The rational functions Pij(z) and sz(z) are selected from
among the enfries in the diagonal or first two subdiagonals of the Pade table
of rational function approximations to the exponential.

The basis for the construction of the approximation problems is the fact
that the variation of parameters form of the solution to (3.25), (3.26)
given by

t
N r r ragt=sp (r N
z¢ = Pys(gAn ) Pyzo * 3 jZ]Pij(NAN) Pra (2 An) Byl

is an approximation to (2.9) in the sense that

N
lz¢ - Z(%F)l >0
th
an N > = uniformly in t for t € {0, 1, 2 ... —;ri} for any tc < =, where

the symbol [a] denotes the greatest integer less than or equal to a (see

[23]).
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The feedback form of the solution (if it exists) to the corresponding

approximating problem and the optimal value of the cost functional are given

by

and
N, —N.. _
(3.27) 4 ({ut}, zo) = <’TTﬁPNZO’ PNZo”

respectively, where the linear operators Fy :Z, + R™ and 'TTN: Zy + Iy are

determined by solving the system of operator equations (see [20])

*

* ~
(3.28) ’1TN = xN'anN + FyRyFN * Qy

N N
AN-BF

(3.29) X NN

N

Ak A =l Iy
(3.30) FN = (RN + BN'TTNBN) BN’TTNAN

in the unknowns TTN, Xy and Fy  where KN.= Pij(%AN) and '\éN = %sz(ﬁAN)BN.

To actually compute the optimal control law, the system (3.28), (3.29),
(3.30) must first be transformed into an equivalent matrix formulation.
Adopting the convention that the symbol TN will denote the matrix representation
for the operator TN with respect to the linear spline basis defined above,
it is not difficult to show that the system (3.28), (3.29), (3.30) is equivalent
to the system of matrix equations given by

T "N T
(3.31) PN = () PN (M) RN T o
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v
N _ AN NN

(3.32) X

) A ,\,-1,\,
(3.33) V= RV + (BN)TPNBN) 8M Tl

N _ NarN N v N r NygN gN_r N LN
where P" = KT , A 'Pij(NA)’ g Nsz(NA)B R™ = §R and K7, A7,
N .

B" and QN are given by (3.8), (3.10), (3.15) and (3.16) respectively.

Standard software packages can be used to solve the system (3.31), (3.32),

N

(3.33), see for instance [2]. Once the matrices F' and pN have been determined,

the Nth

approximating solution to our problem is given by
(3.38) uy(t) = - FyP z(t)

S TN o) Tty + f NN TN o) Tx(t+e)g(0) de ]

or using the fact that'TTNPN approximates'TT, by

(3.35) GN(t) - R']B*’TTNPNz(t)

- [R BO(K ) o (M) e (0) Tx(t)
O 1T Ny N Ny N T

+{ R BO(K ) P(KY) @"(e) x(t+e)g(e)de].
-r

The feedback gains K0 and Kl in (2.4) are approximated by
-1

3.36) F) N 0)T

and

-1
(3.37) AN WM Te(e)
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respectively, if (3.34) is used and by

. . -1
3.38) & el (k) PN N o)
and

-1

-1
(3.39) R'B(kY) PN(kY) oM()Tg(e)

if (3.35) is used.

Finally for a given set of initial conditions x(0) = n, Xg = Vs the

optimal value of the cost functional can be approximated using (3.27).

(3.11) we find
_ -1 -
(3.40) 3(T nw) » LY 0N 1NN T W L)

where hN is given by (3.9).

From
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4. NUMERICAL RESULTS

In this section we present, discuss and analyze numerical results obtained
by using the linear spline based approximation schemes described above to
compute feedback controls for several hereditary regulator problems of the
form given in section 2. For the purpose of comparison we have also computed
approximate solutions using the finite difference based AVE scheme discussed
in [14]. We recall that for the semi-discrete spline scheme, the approximating
feedback gains R“ag’rrg° and R']BE’TTAO(-)T are given by (3.22) and (3.23)
respectively while for the AVE scheme they may be computed using the time
invariant forms of (7.27) and (7.28) in [14]. For the fully discrete spline
scheme, the approximating gains are gi;en either by (3.36) and (3.37) or by
(3.38) and (3.39). Analogous formulae can be derived for a fully discrete
scheme based upon the AVE approximation.

A1l computations were performed on a Control Data Corporation Cyber 170
model 730 at the NASA Langley Research Center (LaRC) using software written in
Fortran. For the semi-discrete schemes, the approximating matrix Riccati
algebraic equations (3.20) were solved usjng both an iterative Newton technique
as it is described in [16] and the Potter method (see [22],[20]) which involves

the eigenvalue-eigenvector decomposition of the 2n(N+1) x 2n(N+1) matrix

T 7]
rAN -gNr-1gN

NT

N
N

- -A
i Q

“
where the matrices AN, BN and QN are as they were defined in section 3. The

implementations of the two methods we used are contained in ORACLS (2], a

software package developed at LaRC for the design of multivariable control systems.
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Although the Newton algorithm performed well on the equations arising
from both the spline and AVE schemes, the Potter method was the more efficient
of the two, particularly for large values of N. The ORACLS implementation
of the Potter method however, requires that the matrix AN be diagonalizable.
This additional requirement posed no difficulties for the spline schemes in any
of the examples we considered. On the other hand, for the AVE scheme, certain
classes of problems (including those involving state equations of dimension
greater than one of the form considered in Examples 4.2, 4.3 and 4.4 below)
lead to AN which are non-diagonalizable (see [14] Theorems 7.11 and 7.12). In
this instance, if one wishes to use the Potter method to solve (3.20), the
generalized eigenvectors of AN must be computed.

For the fully-discrete schemes, the system (3.31), (3.32), (3.33) was
solved using an iterative Newton algorithm from the ORACLS package.

We have included results for five examples. Example 4.1 involves a 1
dimensional state equation while Examples 4.2 and 4.3 involve systems of
dimension 2. In Example 4.4 we consider the wind tunnel system described in
section 1. Examples 4.1 - 4.4 were all solved using semi-discrete approxi-
mations, while in Example 4.5 the fully-discrete method was used to solve

the scalar problem considered in Example 4.1.

Example 4.1

We consider the minimization of
(4.1)  (uwsx(0)uxg) = [ [xP(t) + u¥(t)ldt
0
subject to the scalar differential equation given by

(4.2)  x(t) = x(t) + x(t-1) + u(t).
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00
In this example, the’TrN are scalars and have been tabulated for N = 4,
10
8, 16, and 32 in Table 4.1. The’rTN () are scalar valued functions and have

been plotted for the same values of N in Figures 4.1, 4.2, 4.3 and 4.4.

N _A_\i SPLINE

4 2.8866 2.7940

8 2.8476 2.8054

16 2.8278 2.8084

32 2.8182 2.8091
TABLE 4.1

00
Although we do not have a true value for T , it is immediately clear

from Table 4.1 that the values computed using the spline based scheme appear

to have converged, while those computed by the AVE scheme are converging much
more slowly. The oscillatory behavior exhibited by the spline approximations

to 1T 0 is a consequence of the fact that while in°genera1 it is not the case
thatTroo ”IT"’(O) the requirement R("IT ) C Z, CD(A) imposes the conditions
’rroo ’TY]O(O) for each N. However, because in the closed loop form of the

state equation (see (3.5)) 'TT ( ) appears in the form of the kernel of an
integral operator, the effect of the escillations is minimized.

We selected the initial data
(4.3) x(0) =0 xo(e) =sinmg, -1<98<0,

and computed the trajectories which result when the approximating optimal
feedback controls (computed using either the AVE or the spline approximation
schemes) are applied to the system (4.2), (4.3). Approximate values for the

cost functional (4.1) were computed two ways: directly using the approximating
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optimal controls (3.4) with the corresponding approximating optimal trajectories
(3.5) in (4.1) and also via (3.24). The integration of the closed loop state
equation (3.5) was carried out by first discretizing the integral term and
then applying a modified version of a Runge-Kutta method for the numerical
solution of ordinary differential equation initial value problems. We note
that the numerical integration method employed to compute these trajectories
was completely independent of either of the approximation schemes used to
compute the approximating feedback operators, and thus should not have biased
our results. For N =4, 8, 16, and 32 the approximating optimal trajectories
are plotted in Figures 4.5, 4.7, 4.9 and 4.11while the open loop form of the
approximating optimal controls are plotted in Figures 4.6, 4.8, 4.10 and 4.12.
The approximating values for the cost functional are tabulated in Table 4.2
where columns 1 and 3 contain the values computed directly and columns 2 and 4

the values computed using (3.24).

N AVE SPLINE
Ix(uy))  <TTyPNZo> P20 J(x(uy)) <TTyPN20* PNZo
4 .3309 . 2809 ' .3272 .2484
8 .3281 . 3000 .3271 .3027
16 .3275 .3121 .3272 .3163
32 .3274 .3191 .3273 .3196
TABLE 4.2

We have also computed trajectories and controls for the system (4.2)

with the initial data
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x(0) = 0 xo(e) =

1
- 29 -—z—ief_o.

The resulting values of the cost functional (4.1) are given in Table 4.3.

N AVE SPLINE
J(x(ﬁh)) <TTNPNZO’ PrZo” J(x(ﬁh)) <’T'I"NPNZO, PNZo”
4 .2036 L1724 .2015 .1972
8 .2017 . 1840 .2012 .1972
16 .2013 .1914 .2012 .1974
32 .2012 . 1959 .2012 .1975
TABLE 4.3

Based upon the numerical results for the examples presented above and
several others which we have considered, the following observations concerning

the relative performance of the AVE and Spline based schemes can be made.

(I) The spline scheme converges faster and is more accurate at low
orders. The AVE approximations generate a scheme that appears
to converge like 1/N while that for the splines is like ]/NZ.
This is not unexpected, given our experience with the AVE and
spline approximations in other contexts (e.g., see [5], [9],
[7]). Furthermore, the trajectories, controls, and cost
functional values obtained using the spline approximations
with N = 4 are competitive with the results produced by the

AVE scheme with N = 16. The computational effort and expense
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involved in solving a high order Riccati equation makes this an
important consideration. In the scalar examples we tested the

amount of CPU time required to solve (using the Newton algorithm)

the 5 dimensional Riccati equations (corresponding ton =1 and N = 4)
was on the order of 10 seconds while the 17 dimensional equations

(n =1, N =16) required approximately 70 seconds.

(II) If the value of the cost functional J computed using the
approximating optimal control and the resulting trajectory is
used as a measure of the relative performance of the two approxi-
mation methods, then we found that the spline based technique is
preferable. The spline approximations consistantly produced a

smaller value for J(GN;x(O),xo) than did the AVE scheme.

Similar conclusions can be drawn in the case of higher dimensional equations.
Numerical results for two second order equations are presented in Examples
4.2 and 4.3 below. Since the qualitative behavior of each component of the
matrix valued functions'rr;o(-) was the same as already depicted here in

the 1 dimensional cases, for the 2 dimensional examples we present only the

computed values for the 2 x 2 matrices 11'30.

Example 4.2

We consider the problem of minimizing
(4.4)  J(wsy(0),yge¥(0)uyg) = [ Iy(t)2 + y(£)2 + u(t)?dt
0
subject to the harmonic oscillator with delayed restoring force given by

(4.5)  y(t) + y(t-1) = u(t).
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If we define x(t) by
y(t)

x(t) = s
y(t)

then (4.4) and (4.5) are equivalent to

Husx(0)xg) = Tx(e)x(t) + u(e)Jae

0 1 0 o0 0
x(t) = [ :l x(t) + ]: jl x(t-1) + [ ] u(t)
0 O -1 0 1

respectively.

and

00

The values for 'rfN with N = 4, 8, and 16 obtained using the AVE and

spline schemes are given in Table 4.4 below.

N AVE SPLINE
" 2.8179 1.2816 7] ~ [3.0675 1.4222 7]
4
| 1.2816 1.8876 1.4222 1.9590 |
~2.9276 1.3454 3.0658 1.4210 7]
8
| 1.3454 1.9211 1.4210 1.9596 |
2.9920 1.3814 ] 3.0655 1.4207 7]
16
| 1.3814 1.9398 | 1.4207 1.9599

TABLE 4.4
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Table 4.5 contains (in columns 1 and 3) the values of the cost functional
(4.4) which were obtained when the approximating feedback controllers were

applied to the system (4.5) together with the initial conditions

y(0) =1 y(e) =1 -1<08<0

y(0) = 0 y(e) = 0 -1<0<0.
N AVE SPLINE

J(x(uy)) JTTNPNzO, Pn2o> J(x(uy)) TT\PnZ0° PNZo”
4 3.2861 3.1700 3.2750 3.3857
8 3.2771 3.2165 3.2748 3.3693
16 3.2751 3.2407 3.2747 3.3659
TABLE 4.5

Example 4.3

In this example we again consider the minimization of (4.4), however this
time subject to the harmonic oscillator wfth delayed restoring force and

delayed damping given by
(4.6)  y(t) + y(t-1) + y(t-1) = u(t)

or, equivalently

0 17 0 0 To
x(t) = [ x(t) + [ ] x(t-1) + [: J u(t)
0 0| -1 -1 1

y(t) ™

yit) |

where x(t) = l:
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00
The values of’rrN for this example are given in Table 4.6 below.

N AVE SPLINE
1.9849 1.1248 2.1419 1.2952
4
1.1248 1.6538: 1.2952 1.853528
™ 2.0511 1.1991 2.1394 1.296 T
8
| 1.1991 1.7432 1.296 1.8568 |
~2.0914 1.2440 2.1389 1.2963
16
| 1.2440 1.7965 1.2963 1.8576
TABLE 4.6

. 00
We note that using the AVE scheme, Gibson [14] computed'n.22 to be

2.1034 1.2574
| 1.2574 1.8123

with the convergence being monotonic from below in each component of the
matrix.
The values of the cost functional (4.4) evaluated using the trajectories

obtained by integrating (4.5) with u given by (3.4) and initial conditions

2(e+1) -1§ei-—;-
y(0) =0 y(e) = '{

1
- 20 -fie 0

iIa
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. . 2 -lse<-y
y(0) = -2 y(e) = :
-2 -7 8 <0

are given in Table 4.7.
N AVE SPLINE

J(x(UN)) JTTNPNZO, PN2o” J(x(ﬁﬁ)) <’rrNPNzo, N0
4 14.4103 11.2650 14.2383 13.8926
8 14.2493 12.3886 14.2201 13.8045
16 14.2165 13.0784 14.2160 13.8308

TABLE 4.7

Example 4.4

In this example we investigate the Mach no. control loop problem described

in the introduction. Recall that when the guide vane angle actuator is the
3

control, the state of the system is governed by an equation in R” of the form
1o o o X o 0
T T
x(t)=1 0 0 T |x(t)+{0 0 0| x(t-.33) + | 0| u(t).
0 -of -2zw 0 0 0 w2

Here x = (&M, &0, Gé)T is made up of the variation in Mach no. &M, the
variation in guide vane angle &6, and the variation in guide vane angle
velocity &6, u = 86, isthe guide vane angle actuator input and the parameters
T, ws 5, and k take on the values 1.964 sec., 6.0 rad/sec., .8, and -.0117 deg']

respectively [3].
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Parametric studies [3] on the elements of the state weighting matrix

in the cost functional revealed that if J was chosen as
Hux(0)xg) = [ Ix(EGK(Y) + u?(t)1dt

where Q, = diag(104,0,0), then ‘the resulting control gains, upon simulation,
produced responses which typically did not exceed the physical limitations of
the system.

The values for the matrices’rrso computed using the AVE and Spline schemes
for N = 2, 4, and 8 are given in Table 4.8. For the AVE scheme with N = 8,
the Newton iteration did not converge to a solution of the matrix Riccati

equation. Once again the values computed using the spline approach appear to

have converged.

N AVE SPLINE
[26228.0114  -29.9732 -2.89907] 26314,4858 -29.7940 -2.87087]
2 -26.9732 .0515 .0052 -29.7940 .0560 .0056
| -2.8990 .0052 .0005 | | -2.8708 .0056 .0006 _
26259.9665 -29.8569 ~-2.88587] 26296.0999  -29.7558 -2.8712]
4 -29.8569 .0532 .0054 -29.7558 ,0561 .0056
| -2.8858 .0054 .0006 | | -2.8712 .0056 .0006 |
26294.1091 -~29.7459 -2.8716 |
8 -29.7459 .0561 .0056
| -2.8716 . 0056 .0006 _|

TABLE 4.8
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Using the approximating feedback control laws we computed trajectories
for the problem of driving M from -.1 to 0.0 (corresponding to M varying
from .8 to .9) and &6 from 8.55 to O (corresponding to the guide vane angle
varying from 10.48° to a steady state of ].93°). The initial variation in
the guide vane angle velocity, 66(0) was set to 0. The resulting values for
the cost functional are given in Table 4.9. The Mach no. and guide vane
angle trajectories produced by the approximating control gains computed using
the spline scheme with N = 8 are plotted in Figures 4.13 and 4.14, respectively.
Our results compare favorably with those obtained by Armstrong and Tripp [3]
using an approximating feedback control law produced by a finite difference
technique and with those obtained by Daniel [11] using a spline based

approximation scheme to solve a similar problem in open loop form.

N AVE SPLINE
J(x(ﬁN)) <’TTﬁPNZO’ PN20” J(x(ﬁN)) (TTNPNZO’ PNZ0”
2 414.371 408.0646 414,350 435.8053
4 414.3612 410.6452 414,3496 435,9128
8 — — 414.3495 436.0064
TABLE 4.9
Example 4.5

In this example we apply the fully discrete method discussed at the end
of section 3 to the scalar problem considered in Example 4.1. The feedback

gains were computed by solving the system (3.31), (3.32), (3.33) where the

N N

") L") -
matrices A" and B" were constructed using the (9, 9) Pade approximant together
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with the matrix representation for the operator AN with respect to either the
AVE or linear spline basis. The matrices ng(ﬁAN) were computed using the
routine EXPADE in the ORACLS library.

Approximating feedback gains were computed using both the operator FN N
as in (3.34), and the operator.R']B*’rrNPN as in (3.35). The resu]fingm

approximations to Ko in (2.4) are given in Table 4.10 and Table 4.11, respectively.

N AVE SPLINE
4 2.4086 2.3437
8 2.5898 2.5550

16 2.6940 2.6764

32 2.7500 2.7414

TABLE 4.10

N AVE SPLINE
4 3.0763 2.9556
8 2.9257 2.8768

16 2.8629 2.8418

32 2.8348 2.8253

TABLE 4.11

The approximations to K] behaved qualitatively in a manner similar to their
behavior in the semi-discrete case; oscillatory for the linear spline scheme,
and smooth for the AVE scheme (see Figures 4.1 - 4.4). For both K0 and K]
the convergence appears to be slower for the fully discrete schemes than for

the semi-discrete schemes.
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In order to compare the relative performance of the fully discrete and
semi-disgrete methods, the two control laws, (3.34) and (3.35), and the spline
and AVE schemes, we have computed trajectories corresponding to the initial
conditions (4.3) and tabulated the resulting values of the cost functional
computed both directly and using (3.40). Our results corresponding to control
law (3.34) are given in Table 4.12 while those obtained using control law

(3.35) are given in Table 4.13.

N AVE SPLINE
J(x(UN)) {TTNPNZO, PNZ0” J(x(Gﬁ)) JTTNPNZO, PN26>
4 .3458 .2859 .3344 .2520
8 .3309 .3013 .3283 .3039
16 .3278 .3124 .3273 .3166
32 .3273 .3192 .3272 .3197
TABLE 4.12
N
J(x(UN)) <1TNPN?O’ PnZg” J(x(ﬁN)) éTTNPNzo, N0
4 .3314 .2859 .3276 .2520
8 . 3283 .3013 .3273 .3039
16 .3275 3124 .3273 .3166
32 .3274 .3192 .3273 .3197

TABLE 4.13
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Qur numerical results for the fully discrete schemes appear to point to

the following conclusions:

(1)

(1)

(I11)

(1V)

For low order approximation (i.e., N small) the results produced by
the semi-discrete schemes are better than those produced by the
fully discrete methods. As N increases, however, the two techniques
yield comparable results.

For N large, using an iterative Newton algorithm, the ORACLS

package was able to solve the system (3.31),(3.32),(3.33) arising

in the fully discrete methods in roughly half the time it required
to solve the matrix Riccati algebraic equation (3.20) resulting

from the semi-discrete approximation schemes.

As measured by the magnitude of the cost functional corresponding

to a given set of initial conditions and the rate of convergence

of the approximating feedback gains, control law (3.35) is preferable
to control law (3.34).

Using the same criteria as in (III), for the fully discrete schemes,
as was the case with the semi-discrete schemes, the spline approxi-

mations out-perform the AVE approximations.
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5. THEORETICAL CONSIDERATIONS AND FURTHER REMARKS

We turn to a brief discussion of the convergence exhibited by the "gain"
operators 1n'TTNPN. Careful study of the numerical exaﬁp]es in section 4
reveals that numerically one has weak convergence of'rrNPN, strong (Lz) con-
vergence of the approximating feedback controls {EN} of (3.4) and convergence
of the performance measures (3.6) and J(GN;X(O),XO). We have actually proved
the weak convergence'TTNPN'-“TT'in certain special cases that include scalar
and second order examples such as those considered in section 4. More
precisely, if we consider a hereditary system of the form (1.1) and assume
(1) (AO, Bo) is a controllable system and (ii) Range (BO) D Range (A]),
then {'TTNPN} is uniformly bounded in L(Z). One can then, under assumptions
similar to those invoked by Gibson [14, §6], establish weak convergence of
the sequence. For example, if we further assume (iii) the hereditary system
is stabilizable, (iv) QO’ AO’ A], B0 are such that any admissible control
drives the state to zero asymptotically, and (v) for N sufficiently large,
there exist self-adjoint nonnegative solutions ’TTN of the approximate Riccati
algebraic equations (3.1), then arguments similar to those in [14] (see
Theorem 6.7) can be made to obtain 'rTNPN—A TT.

If we are willing to assume that Gibson's Conjecture 7.1 (essentially,
that the approximation scheme when applied preserves uniform asymptotic
stability possessed by any original hereditary system) holds for the spline
schemes (an assumption that Gibson makes for the "averaging" scheme and one
which, based on spectral considerations, we feel confident is valid for both
schemes), then we can guarantee existence of solutions ’TTN of the approximate
Riccati equations (3.1) and furthermore, boundedness of {’TTNPN} follows

immediately (e.g., see Theorem 7.5 of [14]).
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With respect to the question of strong or trace norm convergence of
{'TTNPN} , we note that Gibson [14] obtqins such convergence for the averaging
scheme. This in turn (see Theorem 6.8 and section 7 of [14]) yields con-
vergence of the payoffs. Fundamental to Gibson's arguments (see Theorems 6.1
and 6.9) is the result S;(t) »»S*(t) where {S(t)} is the solution semigroup
for the original hereditary system(2.2) with u = 0 and {SN(t)}-is the solution
semigroup for the approximating system (e.g., (3.2)) with u = 0. For our
spline schemes we don't believe arguments similar to those of Gibson will
suffice to obtain this strong convergence of adjoints; specifically, we don't
believe that A; > A* in a mode sufficient to yield the required convergence
of Sg. At this time we honestly don't know whether we have strong convergence
of {'TTNPN} for the spline schemes. From our numerical results we tend to
doubt strong convergence although we do observe the desired convergence of the
payoffs and can actually establish this theoretically for our spline schemes.
If strong convergence of {'TTNPN} is true, we believe a theory somewhat dif-
ferent from that of Gibson's will be required to establish this. In this
regard we further note that Kunisch, in his investigation [19] of both the
spline and averaging schemes for the finite interval integral quadratic cost
control problem for systems with delays, obtains convergence of the payoffs
and controls and weak convergence of the associated time dependent Riccati
operators in a theoretical treatment that is independent of adjoint convergence
considerations. However, even if this theory could be extended to treat the
infinite interval regulator problems, it would not appear to yield the stronger
convergence results for {'TTNPN}.

In addition to our numerical findings, there is other evidence that appears

to cast doubts on the possiblilty of strong convergence of {’TrNPN}. Recall




45

that 7, C D(A) for each N and since in the representation
-
e Ty

TPy = »
10 .l

the first column is "in" D(A), we must have 'rrgo = ’F[%O(O). The components
of TT do not satisfy such a boundary condition. Indeed (see [14, Theor. 4.4])
col ( ’TT'OO, ’TT]O) is "in" D(A*). This suggests that the convergence of
’TTNPN to TV .cannot occur in a very strong mode.

The theoretical considerations above aside, we believe the evidence is
quite substantial in support of our contention that the spline methods offer
an attractive means for computing feedback gains in delay system regulator
problems. We close with a summary of remarks on the merits of our spline
schemes over the averaging scheme (we don't mean to discredit the averaging
technique - for many problems it should perform quite admirably - rather we
wish to argue that in some examples, the spline schemes can offer significant
improvements). We recall from the numerical results of section 4 that
(on these examples) the linear spline scheme always is as good as the
averaging scheme, in some cases it is better (faster convergence, better
approximation at low orders). In some situations the averaging scheme fails
numerically to converge, while this never (in our experience) occurs with
the spline schemes.

As further evidence of the usefulness of the spline schemes, we offer
the recent experiences of Gibson (private communication) and Ito [21] in

using the averaging and spline approkimation schemes as a basis for
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computation of closed loop eigenvalues for delay systems (e.g., using the
system (3.2), (3.3) to compute eigenvalues that approximate those of the

feedback system (2.2), (2.13)). In these efforts, the spline based schemes
performed in a far superior manner. We interpret this as another argument

in favor of construction of feedback gains via our spline schemes.
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